Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction

Por um escritor misterioso

Descrição

Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Stiffened fibre-like microenvironment based on patterned equidistant micropillars directs chondrocyte hypertrophy - ScienceDirect
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
PDF) Topography induced stiffness alteration of stem cells influences osteogenic differentiation
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Molecular investigations of hBMSC gene expression after 1 and 7 d
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Substrate stiffness promotes dentinogenesis via LAMB1–FAK–MEK1/2 signaling axis - Bai - Oral Diseases - Wiley Online Library
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
ACS Biomaterials Science & Engineering
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Substrate Stiffness and Composition Specifically Direct Differentiation of Induced Pluripotent Stem Cells
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
The role of Piezo proteins and cellular mechanosensing in tuning the fate of transplanted stem cells
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Frontiers Epigenetic control of mesenchymal stem cells orchestrates bone regeneration
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Substrate stiffness regulates the differentiation profile and functions of osteoclasts via cytoskeletal arrangement
Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the  Human Apical Papilla via the Processes of Mechanosensing and  Mechanotransduction
Molecular mechanosensors in osteocytes
de por adulto (o preço varia de acordo com o tamanho do grupo)